Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.
نویسندگان
چکیده
Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.
منابع مشابه
cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteobl...
متن کاملGenome-wide analysis and prediction of functional long noncoding RNAs in osteoblast differentiation under simulated microgravity
Long noncoding RNAs (lncRNAs) have been regarded as important regulators in numerous biological processes during cell development. However, the holistic lncRNA expression pattern and potential functions during osteoblast differentiation under simulated microgravity remain unknown. In the present study, a high throughput microarray assay was performed to detect lncRNA and mRNA expression profile...
متن کاملThe Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation
Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, t...
متن کاملExpression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition
Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...
متن کاملStray-field nuclear magnetic resonance imaging in microgravity conditions
Magnetic levitation has been proposed as an alternative approach to simulate on Earth microgravity conditions encountered in space, allowing the investigation of weightlessness on materials and biological systems. In general, very strong magnetic fields, 15 T or higher, are required to achieve levitation for a majority of diamagnetic substances. Here, we show that it is possible to achieve levi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microgravity science and technology
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2009